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Abstract
Drones have increasingly collaborated with human workers in some workspaces, such as
warehouses. The failure of a drone flight may bring potential risks to human beings' life
safety during some aerial tasks. One of the most common flight failures is triggered by
damaged propellers. To quickly detect physical damage to propellers, recognise risky
flights, and provide early warnings to surrounding human workers, a new and compre-
hensive fault diagnosis framework is presented that uses only the audio caused by pro-
peller rotation without accessing any flight data. The diagnosis framework includes three
components: leverage convolutional neural networks, transfer learning, and Bayesian
optimisation. Particularly, the audio signal from an actual flight is collected and trans-
ferred into time–frequency spectrograms. First, a convolutional neural network‐based
diagnosis model that utilises these spectrograms is developed to identify whether there
is any broken propeller involved in a specific drone flight. Additionally, the authors
employ Monte Carlo dropout sampling to obtain the inconsistency of diagnostic results
and compute the mean probability score vector's entropy (uncertainty) as another factor
to diagnose the drone flight. Next, to reduce data dependence on different drone types,
the convolutional neural network‐based diagnosis model is further augmented by transfer
learning. That is, the knowledge of a well‐trained diagnosis model is refined by using a
small set of data from a different drone. The modified diagnosis model has the ability to
detect the broken propeller of the second drone. Thirdly, to reduce the hyperparameters'
tuning efforts and reinforce the robustness of the network, Bayesian optimisation takes
advantage of the observed diagnosis model performances to construct a Gaussian pro-
cess model that allows the acquisition function to choose the optimal network hyper-
parameters. The proposed diagnosis framework is validated via real experimental flight
tests and has a reasonably high diagnosis accuracy.
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1 | INTRODUCTION

In recent decades, considering the low cost and high maneu-
verability, there has been increasing interest in applying drones
in different fields, including transportation monitoring [1],
infrastructure inspection [2, 3], and disaster resilience [4, 5].
Despite these applications, the sophisticated scenario accom-
plishment is premised on the drone's steady flight. The po-
tential safety issue associated with an unsteady drone flight

limits the reliability of the drone application, especially
considering that some drone tasks in the warehouse, including
moving, carrying, and monitoring, require close proximity
between drones and human workers [6]. This potential issue
increases the risk of physical injury to human workers.

Therefore, it is no surprise that many researchers have paid
attention to the theme of drone fault diagnosis. Avram et al. [7]
proposed a dynamics‐based method to detect, isolate, and
estimate sensor bias faults in drone accelerometers and
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gyroscope measurements. Al Younes et al. [8] introduced an
output estimator to detect the sensor faults. Hansen and
Blanke [9] used non‐linear analytical redundancies to detect
and isolate the airspeed sensor and even the wind speed, but
the propulsion dynamics are unknown. On the other hand,
compared to the abnormal computational commands caused
by the fault sensor, the physically damaged propeller may cause
the flight to unbalance and fail directly, which threatens human
beings' life safety. Ghalamchi and Mueller [10] used the vi-
bration data captured by a built‐in accelerometer sensor to
discriminate the physically broken propeller. The collected
audio data in de Jesus Rangel‐Magdaleno et al. [11] were
transformed into spectra that depict the distribution of energy
across various frequency bands. Subsequently, a manual
statistics‐based discrimination process was employed to
distinguish the intact and physically broken propellers. In a
similar vein, Iannace et al. [12] first collected the audio data
from the quadrotor fixed in a tripod, and then built an artificial
neural network to process the converted spectrums and
automatically detect the unbalanced propeller.

The audio signal produced from propeller rotation could
be a critical criterion for analyzing the drone's abnormal
behavior. Considering the time–frequency representation
property, ‘spectrogram’ is a common approach for represent-
ing the audio signals of drones. Cabrera‐Ponce et al. [13] uti-
lized spectrogram images to train a network to identify whether
a drone was flying nearby. Harmanny et al. [14] applied the
spectrogram to discriminate birds and mini‐UAVs. Spectro-
gram has the potential to display the characteristics of a drone
flight with a broken propeller. Even if it is feasible for human
beings to use their eyes to discriminate the broken propeller
upon spectrogram images, the time taken for identification may
not be fast enough to guarantee human safety when facing an
unsteady flying drone.

To guarantee efficiency and accuracy, deep neural networks
turn out to be great candidates in the fault diagnosis fields
[15–17]. Among different kinds of neural network architectures,
convolutional neural network (CNN) possesses outstanding
decision‐making capability for image‐related studies [18, 19].
Therefore, CNNs have been widely incorporated into fault
diagnosis studies to extract some abnormal features of images.
For example, Liu et al. [20] employed infrared images to build up
a CNN for rotating machinery fault diagnosis. Guo et al. [21]
implemented short‐time Fourier transform to transform the
signal of the global positioning system, inertial measurement
unit, and air data system into two‐dimensional images for
training and used CNN to distinguish the damaged drones.

Furthermore, due to the natural uncertainty of the
network‐based models, these diagnosis models cannot be fully
trusted, especially when they are related to human safety [22].
The uncertainty can be used to quantify the confidence degree
of a model for a diagnosis problem. For example, a model
might possess high uncertainty if the softmax output is 0.49
and 0.51 in a binary classification problem. A diagnosis model
can be uncertain in its decision even with a high softmax
output [23]. Therefore, besides the decision made by the
softmax outputs, it is necessary to explicitly measure and

consider the uncertainty of the network‐based diagnosis model
to achieve a more reliable and accurate diagnosis result.

The fault diagnosis of different drones requires repetitive
training work since only one well‐trained network is capable of
diagnosis for one specific drone. It is important to efficiently
generalise the CNN‐based diagnosis method to other drones.
In recent years, transfer learning techniques have been used to
extend the adaption of a model, which takes a big step forward
toward the development of a generalised fault diagnosis model.
Zhong et al. [24] developed a CNN using a large‐scale anno-
tated gas turbine normal dataset and applied transfer learning
to accomplish a fault diagnosis task with limited fault data. Wen
et al. [25] proposed a supervised transfer learning to diagnose
the data‐driven fault by minimising the discrepancy penalty
between source features and target features. Zhang et al. [26]
employed transfer learning to guarantee the bearing fault
diagnosis performance under different working conditions.

The training process of a network‐based diagnosis model
tunes the weights of the network layers to be optimal such that
it guarantees a promising diagnosis accuracy. On the other
hand, the model hyperparameters, for example, leaning rate
and mini‐batch size, also contribute to the robustness of the
fault diagnosis model. Different combinations of hyper-
parameter values may lead to different performances of a
drone fault diagnosis model. Furthermore, the tuning of the
model hyperparameters is usually heuristic and requires expert
experience. Therefore, finding a suitable combination of the
hyperparameter values is computationally expensive. Even
though there are some hyperparameter optimisation algorithms
for neural network learning like grid search or random search,
the hyperparameter selection efficiency is still impeded by
evaluating too many unnecessary candidates. Thus, consider-
able attention has been given to implementing Bayesian opti-
misation for network training [27–30]. Bayesian optimisation
takes advantage of the evaluated objective function (e.g., vali-
dation error) to build up a probabilistic model such that it
reduces unnecessary computation by selecting more reliable
hyperparameters.

This paper proposes an audio‐based deep learning method
to detect if the flight may fail because of any physically broken
drone's propeller. The audio signal was produced by actual
quadrotors. Compared to traditional audio‐based fault diag-
nosis, which directly uses audio signal data to do analysis
[31, 32], this paper represents the audio signal as time–
frequency spectrogram images with continuous energy varia-
tion. A CNN is built with a spectrogram dataset to diagnose
the unbalanced propeller. This study was developed based on
some preliminary works in Ref. [33]. Different from the works
in Ref. [33], which use fixed drones on an iron tower, the data
collection and experiment validation in this study were con-
ducted with flying drones. This change improves the applica-
tion potential of this fault diagnosis method. What's more, the
employment of uncertainty quantification and Bayesian opti-
misation in this study refines the reliability and robustness of
the diagnosis model.

In the scene shown in Figure 1, an unsteady flying drone is
threatening the human worker's safety. The audio receiver
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records the abnormal noise caused by the drone flight. First,
the collected audio data are converted to a 2D spectrogram
using short‐time Fourier transform and colour map and sent to
the network‐based diagnosis model. Next, the model de-
termines the condition of the drone propeller and estimates the
damage level for the human worker's safety. Particularly,
damage level ‘0’ means the propeller is in good condition,
flying steady, ‘1’ means the propeller is slightly broken, and ‘2’
means the propeller is seriously broken, may fall directly. The
human worker will receive a warning based on the damage level
and avoid potential physical injury. Furthermore, the confi-
dence of the diagnosis model regarding the spectrogram input,
that is, uncertainty, is also measured using Monte Carlo
dropout sampling (MCDS), which has three levels as additional
information to ensure the safety of human workers. For
example, a broken propeller may be misclassified as a ‘0’
damage level and have a ‘2’ uncertainty level. In this case, the
early warning would also be triggered to further ensure the
safety of human workers due to the high uncertainty level. In
addition, transfer learning and Bayesian optimisation are
combined to obtain a generalised diagnosis model with
selected training hyperparameters. This approach possesses
great classification accuracy regarding detecting broken pro-
pellers during drone flights.

The uniqueness of this work is that the proposed diagnosis
framework, which uses only the audio caused by the propeller
rotation without accessing any flight data, can significantly
promote wide application in many types of drones without
reconfiguring the hardware or software. The main contribu-
tions of this paper are summarised as follows. (1) We explicitly
evaluate the uncertainty of the diagnosis model and assess
potential risks based on both the diagnosed propeller damage
level and the quantified uncertainty level to ensure human

safety. (2) A generalised flying drone propeller diagnosis
framework leveraging several network‐based techniques is
proposed. The fast and reliable decision‐making process from
CNN, the minor data requirement from transfer learning, and
the optimised network hyperparameters from Bayesian opti-
misation enhance the efficiency, adaption, and robustness of
this diagnosis framework, respectively. (3) The effectiveness of
the proposed diagnosis framework has been experimentally
validated using flying drones.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the whole framework; Section 3 presents the
data collection and pre‐process; Section 4 presents the diag-
nosis method based on CNNs; Section 5 extends this method
to different drones based on transfer learning; Section 6
combines Bayesian optimisation with transfer learning; and
Section 7 concludes this paper.

2 | PROPOSED DRONE PROPELLER
DIAGNOSIS SCHEME

This paper employs the audio caused by flight as the essential
component of the diagnosis model. This method is easy to
implement and does not require any additional sensors.

Figure 2 demonstrates the framework of the proposed
diagnosis method. The propeller rotation of Quadrotor A
generates a series of audio signal data that are captured in the
time domain. To display more audio signal features, the time
domain‐based audio signals are automatically converted to a
time–frequency domain image called a ‘spectrogram’. The two‐
dimensional images are labelled based on different damage
levels of propellers and separated into training, validation, and

F I GURE 1 Overview of the presented autonomous flight failure
detection framework: this framework only uses the audio caused by the
flight without accessing any other data from the drone and can quickly
detect physical damage to propellers, quantify the confidence of the
diagnosis, recognise a risky flight, and provide early warning to surrounding
human workers. This framework is motivated by the fact that drones have
increasingly collaborated with human workers in some workspaces, such as
warehouses. The failure of drone flight may bring potential risks to human
beings' life safety during some aerial tasks. This work aims to provide early
and reliable warning of such failures, which can alert surrounding human
workers in advance.

F I GURE 2 The architecture of the presented framework: the
framework includes three components that leverage a convolutional neural
network (CNN), transfer learning, and Bayesian optimisation. The audio
signal from an actual flight is first collected and transferred into time–
frequency spectrograms. A CNN model that utilises these spectrograms is
then developed to identify whether there is any broken propeller involved
in a specific drone flight. Also, to reduce data dependence on different
drone types, the CNN‐based diagnosis model is further augmented by
transfer learning. That is, the knowledge of a well‐trained diagnosis model is
refined by using a small set of data from a different drone. The modified
diagnosis model has the ability to detect the broken propeller of the second
drone (i.e., Quadrotor B in the figure). Furthermore, to reduce the
hyperparameters' tuning efforts and reinforce the robustness of the
network, Bayesian optimisation takes advantage of the observed diagnosis
model performances to construct a Gaussian process model, which allows
the acquisition function to choose the optimal network hyperparameters.
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test datasets. CNN is trained as the fault diagnosis model for
Quadrotor A to distinguish the labelled spectrograms. To
extend the exploitable range of the trained CNN model,
transfer learning is implemented to obtain a modified network
by using a small set of audio signals from Quadrotor B and a
part of a well‐trained network generated from Quadrotor A. To
reinforce network robustness, Bayesian optimisation is
employed to select the optimal network training hyper-
parameters by using a Gaussian process model built with the
results of multiple training processes. The modified network,
which corresponds to the optimal hyperparameters, has the
promising capability to detect whether a broken propeller has
been involved in Quadrotor B.

3 | AUDIO DATA COLLECTION AND
ANALYSIS

3.1 | Audio data processing

The audio data show the overall variation of the drone noise
intensity with time. However, the flying drone with a broken
propeller does not always display an apparent noise amplitude
change in the audio signal. This study employs the spectrogram
as the time–frequency interpretation of the audio signal
collected from flying drones. The spectrogram illustrates the
signal in both time and frequency domains, and highlights the
temporal evolution of the audio signal spectral content [34]. To
construct a spectrogram, an audio signal collected from a flying
drone is first windowed into several short signals. Then, the
Fourier transform is applied to compute the windowed seg-
ments that contain the frequency information. Eventually, the
computed segments overlap with each other along with the
time intervals according to a certain percentage. The horizontal
and vertical axes of the constructed spectrograms describe the
frequency and time of the drone's audio signal, respectively.
The discrete‐time spectrogram S(t, k) is denoted as:

Sðt; kÞ ¼
XN−1

n¼0
wðnÞaðt þ nÞe−i2πkN n ð1Þ

where t is time instance, k is frequency, w(n) is Hann window
with N samples, and a(t) is the drone's audio signal. In addi-
tion, the point of the spectrogram is represented with a colour
that indicates the intensity of the drone's audio signal.

3.2 | Experimental test platform and data
collection

The constituents of the test platform are two types of quad-
rotors with different scales, several different level‐damaged
propellers, and an audio receiver. Figure 3 illustrates the two
quadrotors used to collect audio data and verify the experi-
mental test results. The selection of these two types of quad-
rotors is based on the following reasons: (1) Their physical

dimensions render them suitable for the execution of tasks
within warehousing environments. (2) The proximity in size
between these two quadrotors facilitates a reasonable applica-
tion of diagnostic knowledge generalisation based on transfer
learning techniques. (3) These two quadrotors possess the
capability to be equipped with protective guards, thereby
ensuring the safety of human operators during experimental
tests, particularly in instances of broken propellers.

Notably, the potential damage conditions of propellers are
theoretically limitless. Given the impracticality of exhaustively
including all propeller damage conditions in our experimental
tests, our approach centres on three representative damage
levels of the propeller: the unbroken level, the marginally
broken level, and the seriously broken level. Moreover, these
three damage levels of the propeller can serve as critical
thresholds, effectively covering most of the range of potential
damage conditions of the propeller. Figure 4 shows three levels
of damaged propellers with labels from quadrotor 1. The
flawless propeller is labelled as A. The marginally damaged
propeller is labelled as B. The propeller with serious damage is
labelled as C. The propeller with label A has a 0.146 m
diameter as length. The propeller with label B has a 0.136 m
length. The length of the propeller labelled C is 0.123 m.

The audio signal data collection experiments are divided
into three parts for the experimental quadrotor. Table 1 in-
dicates the different propeller combinations used for the test
configurations. The quadrotor is set to normal thrust com-
mand to make it hover when the propeller is good. When using
a different combination of the broken propeller with good
propellers, it cannot support continuous smooth flying and
decreases altitude quickly. The audio recorder gathers each
sample of audio data with a 2 s duration. Figure 5a,b show the

F I GURE 3 Quadrotors used for the experimental tests. The first
quadrotor is used to validate the CNN diagnosis model and the Bayesian
optimisation algorithm, while the second quadrotor is used to validate the
effectiveness of transfer learning in the framework.

F I GURE 4 Three types of propellers were used for experimental tests:
A is an unbroken propeller, B is a slightly broken propeller, and C is a
seriously broken propeller.
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collected audio data samples with different damage level pro-
pellers, respectively.

The audio signal may display some specific features in the
spectrogram due to propeller rotation. The audio signals are
converted to spectrogram images according to Equation (1).
Two spectrograms from broken and unbroken propellers are
exhibited in Figure 5c,d. Unlike spectrums [12] that display the
energy distribution of the audio data in the frequency domain,
the spectrogram offers additional information in the time
domain. Meanwhile, given the energy variation of the different
frequencies and time instances, it displays diverse colors. The
audio signal with a 2 s duration is distributed evenly and
emerges as several straight lines with several certain frequency
channels in the horizontal direction. Therefore, the spectro-
gram illustrates the audio signal in two dimensions both inte-
grally and consecutively.

4 | IMAGE‐BASED DEEP LEARNING
DETECTION MODEL

4.1 | A CNN‐based diagnosis model

Although the properties of audio signals are demonstrated
outstandingly by the spectrogram when diagnosing drone

propellers, how to efficiently distinguish spectrograms corre-
sponding to drone flights with broken propellers is still a chal-
lenge. Many researchers have paid great attention to deep
learning techniques to automatically monitor the health of
different systems, including infrastructure [35–38]. Therefore,
this paper proposes aCNNmodel to assistwithdecision‐making.

To accurately diagnose the propeller condition, firstly, the
audio features of the flying drone have to be extracted from the
constructed spectrogram. Figure 6 shows the general archi-
tecture of CNN. The audio‐based spectrogram image is the
network input. The audio signal's power displayed in the
spectrogram has red, green, and blue channels, where each
channel is composed of brightness intensities from 0 to 255. A
leaning kernel (filter) is employed to convolve around the
audio‐based spectrogram upon a certain stride such that the
audio characteristics corresponding to each time and frequency
can be extracted. The extracted audio feature map is obtained
using the following equation:

Mði; jÞ ¼
Xa

u¼−a

Xb

v¼−b
kðu; vÞIðiþ u; j þ vÞ ð2Þ

where M is the extracted audio feature map, k is a u � v size
kernel, and I is the original spectrogram image. Furthermore,

TABLE 1 Test configurations.
Tests Propeller sets Thrust commands

Configuration 1 Four propellers in good condition Normal

Configuration 2 Three propellers in good condition plus propeller B Normal

Configuration 3 Three propellers in good condition plus propeller C Normal

F I GURE 5 Audio signals and spectrogram images generated from the drone with broken and unbroken propellers. (a) Audio signals generated from the
flight with a broken propeller. (b) Audio signals generated from the flight with unbroken propellers. (c) Spectrogram generated from the flight with a broken
propeller. (d) Spectrogram generated from the flight with unbroken propellers.
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to prevent exponential growth in network training, each audio
feature map M extracted from the convolutional layer passes
through a Relu activation function R(x) = max(0, x) that sets all
negative values to zero.

Next, a preliminary diagnosis decision has to be made
based on the extracted audio feature map. To assist the diag-
nosis model in making a decision, we apply the Softmax
function to represent the extracted audio characteristics in a
more straightforward way. The computed audio feature map in
Equation (2) is converted to a probability score vector S. The
diagnosis model training stochastically initialises the layer
weights to learn the audio characteristics in the first propaga-
tive iteration. The network output Ŷ is labelled based on the
different damage levels of the propeller. The evaluation of the
diagnosis decision is described using the following cross‐
entropy loss equation:

L¼ −
1
Z

XZ

n¼1

XC

c¼1
Bn;c Y ≠ Ŷglog sn;c

� ��
ð3Þ

where Z is the observed spectrogram numbers, Y stands for
ground truth propeller damage level label, C is the number of
the propeller conditions, Bn,c is the binary indicator from Y
and Ŷ for propeller damage level c in the observation n, and
sn,c is the probability score for propeller damage level c in the
observation n.

Eventually, the accuracy of the propeller diagnosis de-
cisions needs to keep improving during the training process.
Equation (3) indicates the extent of the misclassification made
by the diagnosis model. To minimize the misclassification, the
stochastic gradient descent with momentum is implemented to
modify the layer's parameters by backpropagation in each
iteration using the following equation:

θiþ1 ¼ θi − η ∇ L θið Þ þ α θi − θi−1ð Þ ð4Þ

where θ is the parameter vector (weights and biases) used to
learn audio characteristics, η is the learning rate, ∇LðθÞ is the
gradient of loss calculated based on Equation (3), and α is the
momentum rate. By optimising θ, the diagnosis model is
capable of extracting valuable audio characteristics from
spectrogram images such that the drone flight with a broken
propeller can be accurately detected.

4.2 | Uncertainty quantification of propeller
diagnosis model

The description in the previous subsection briefly illustrates
the CNN‐based diagnosis model. The propeller condition can
be accurately identified based on a diagnosis model f with well‐
tuned parameters Θ. However, such a data‐driven model still
leaves room for a level of uncertainty in propeller diagnosis.
The natural uncertainty may result in mistakes in drone diag-
nosis, posing risks regarding the safety of human workers.
Therefore, the propeller condition predicted by the diagnosis
model should not be the only consideration for triggering early
warning.

We introduce MCDS to capture the inconsistency of the
diagnostic results and explicitly quantify the uncertainty of the
diagnosis model as another essential element and further
improve the reliability of the propeller diagnosis. Dropout in
deep learning algorithms is capable of not only avoiding
overfitting but also serving as a Bayesian approximation of a
Gaussian process model over network parameters [23]. Given
spectrogram images S and identified propeller conditions Ŷ ,

the posterior over the parameters p ΘjS; Ŷ
� �

is evaluated

using Bayesian inference. Due to the difficulty of analytical

evaluation of the posterior, p ΘjS; Ŷ
� �

can be approximated

with a dropout distribution q Θð Þ using variational inference
[39]. In addition, the network training process is beneficial for
learning q(Θ) [40]. Therefore, using MCDS, the mean softmax

F I GURE 6 The CNN architecture: the two‐dimensional spectrogram image is the input of the first convolution layer. The input image features are
extracted using a filter based on Equation (2) in the convolution layer. The ReLU activation function turns the elements of the extracted feature maps to be non‐
negative. The pooling layer reduces the size of the convolved feature maps. The fully connected layer utilises the feature maps from the last pooling layer to
predict the class of the input spectrogram image. The network output comprises three propeller conditions, that is, unbroken, slightly broken, and seriously
broken propellers.
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score of the propeller condition for a spectrogram image at test
time is denoted as follows [41]:

sc ≈
1
M

XM

m¼1
Softmaxðf Θ̂mðSÞÞ ð5Þ

where M is the Monte Carlo sampling size, Θ̂m indicates
the diagnosis model parameters fitting to q(Θ), and S is the
spectrogram input. This mean softmax score encapsulates the
aggregate softmax score derived from all dropout samples,
with each sample contributing uniquely to this mean score. The
inconsistency in softmax scores across individual samples
actually reveals the lack of confidence in diagnosing propeller
conditions. In addition, the entropy of the probability score
vector (i.e., H(S)) is defined as the uncertainty of the diagnosis
model and can be used to determine the lack of confidence in
the diagnosis model in Ref. [41]. H(S) is defined using the
following equation in this study:

HðSÞ ¼ −
XC

c¼1
sclog scð Þ ð6Þ

Note that the uncertainty level is identified based on some
user‐defined thresholds of the entropy H(S). Additionally, be-
sides the calculated entropy, the standard deviation of the
softmax score also has the potential to be an indicator of the
diagnostic model's uncertainty.

4.3 | Propeller diagnosis test

4.3.1 | Diagnosis model training

We conducted experimental tests with the audio receiver
placed randomly in proximity. The experimental propellers
have three different damage levels, which are unbroken, slightly
broken and seriously broken. Each propeller condition evolves
its own dataset with 138 spectrogram samples. 70% (290) of
the spectrogram images are used to constitute the training
dataset of the neural network. The training dataset takes the
most proportion of the spectrogram images and is used to
learn a set of weights of a model for the diagnosis. Next, 15%
(62) of the spectrogram images are used to constitute the
validation dataset of the neural network, which prevents
overfitting by tuning the parameters of the diagnosis model.
Finally, the test dataset is composed of the remaining spec-
trogram samples (62 spectrogram images). The test data are
treated as an unknown dataset for the model to observe the
diagnosis ability of the well‐trained model. We design a 2D
convolutional network with three layers for the spectrogram‐
based diagnosis model. Besides, instead of solely converting
the audio data to image‐based spectrograms, we transform the
audio data to sequence‐based spectrums as introduced in prior
studies [11, 12]. The allocation of training, validation, and test

datasets for spectrums mirrors that of the spectrograms. We
develop a 1D CNN with three layers to process spectrums.

To evaluate the influence of proximity to the audio
receiver, a series of experiments are conducted at various dis-
tances, that is, 2, 4, 6, and 8 m. For each distance setting, we
conduct experimental tests to generate spectrogram samples
corresponding to the propellers under three conditions. Each
propeller condition generates a distinct dataset, including 140
spectrogram images. We partition these images, allocating 70%
(294 spectrogram images) for training, 15% (63 spectrogram
images) for validation, and the remaining samples (63 spec-
trogram images) for testing. Notably, rather than training in-
dividual networks for each distance, a single neural network is
trained to comprehensively capture the diagnostic performance
across all distances. Furthermore, we introduce white Gaussian
noise into the collected audio data at different signal‐to‐noise
ratios (SNRs) of 50, 30, and 10 dB to simulate audio data
collected from real‐world environments. Initially, an assess-
ment of the accuracy in classifying the noise‐added audio data
without retraining the network is conducted. Subsequently, a
retraining phase of the network is performed using the noise‐
added audio data, and the resulting classification accuracy is
evaluated.

4.3.2 | Test results

Figure 7 demonstrates the propeller diagnosis using spectro-
grams with uncertainty quantification at test time. The audio
data generated from the propeller rotation are captured by a
microphone and transferred to spectrograms as the input data
of the CNN model. We obtain the computational time cor-
responding to different dropout sample sizes M and summarise
the results in Table 2. The results show that augmenting the
sample size has a notable effect in terms of prolonging the
inference time. A large value of M (e.g., M = 30 or M = 40)
signifies the number of samples in quantifying the uncertainty
of the diagnostic model, thereby enhancing the accuracy of
uncertainty quantification. However, it is important to
acknowledge that this enhancement is accompanied by an
increment in computational time (e.g., 0.504 s or 0.746 s),

F I GURE 7 Propeller diagnosis with uncertainty quantification.
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which potentially limits the efficiency of the online diagnosis.
Consequently, the selection of an appropriate value for M
becomes a trade‐off problem. We select M = 20 to balance
these two factors, and the corresponding computational time
of 0.257 s could be appropriately utilised in the online diag-
nosis. The damage level and uncertainty level are determined
based on the softmax score statics from the sample bin.

Furthermore, Figure 8 illustrates the diagnosis results using
the test dataset. The identification of each image for the
propeller condition is labeled using different markers. The
corresponding uncertainty is calculated using Equation (6).
Particularly, high uncertainty means that the probability scores
for each propeller condition tends to be even. In other words,
for markers with high uncertainty values, the model shows less
confidence in diagnosing propeller conditions. Overall, the
flight with a damaged propeller can be detected with 96.78%
accuracy, surpassing the accuracy of 93.55% obtained when
employing spectrum representations. The only two mistakes
made by the diagnosis model are highlighted using red colors.
Based on the observation of the modified figure, compared to
the other two label categories, ‘damage level 1’ exhibits the
highest average uncertainties. Meanwhile, it is noteworthy that
‘damage level 1’ is also the label most likely to be misclassified.
We adopt a predetermined threshold of 0.7 to govern the
generation of warnings. Note that even though the diagnosis
model misclassifies a broken propeller to be an unbroken one,
that is, the red dot, an early warning would still be triggered
due to high uncertainty.

The drone with unbroken propellers would either hover or
move horizontally within predefined regions. However,
Figure 9 depicts the flight of the drone with a seriously broken
propeller, where the drone is in unsteady flight and directly falls

down. After 2 s of audio collection time, the whole diagnosis
process requires 0.52 s to distinguish the unsafe drone based
on the identified damage and uncertainty levels. Note that the
execution time of the diagnostic process may slightly vary. A
warning signal would be given to humans so that they could
perceive the threatening drone before it crashes.

Table 3 illustrates the diagnostic accuracy based on the
various distances between the audio receiver and the quadrotor
as well as the different levels of SNR. Based on the obtained
results, the optimal operating distance falls within the
approximate range of 4–6 m. Distances shorter than this range
tend to introduce wind noise, adversely affecting classification
accuracy, while longer distances may marginally reduce accu-
racy due to a decrease in the audio signal magnitude. Mean-
while, environmental noises exert a substantial influence on
classification accuracy. Specifically, when there is no network
retraining, classification accuracy experiences a notable decline
(i.e., from 94.35% to 49.17%) as the SNR changes from 50 dB
to 10 dB. Fortunately, through the process of network
retraining, it is possible to improve the classification accuracy,
bringing it up from 49.17% to 94.05%.

5 | GENERALISED DIAGNOSTIC
MODEL FOR DRONES

5.1 | Diagnostic model generalisation using
transfer learning

The accurate and reliable CNN‐based drone fault diagnosis
exhibits the potential for industrial implementation. However,
only one well‐trained network diagnosis model probably fails
to discriminate the broken propellers of different drones due
to the drone's property diversity, for example, different drone
frames, propeller sizes, and rotation speeds. A straightforward
way to detect broken propellers for other drones would be by
developing the CNN‐based diagnosis model for each drone.

TABLE 2 Details of Monte Carlo dropout sampling (MCDS)
computational time.

Classification with MCDS Inference time (s)

M = 10 0.124

M = 20 0.257

M = 30 0.504

M = 40 0.746

F I GURE 8 Diagnosis results: the blue markers indicate the diagnosed
propeller conditions, the red markers stand for the mistakes made by the
diagnosis model. The x‐axis shows the ground truth of samples. Please note
there is no misclassification for damage level 1.

F I GURE 9 The experimental test of the CNN‐based diagnosis model.
The experimental video is available via this link.
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However, this approach is inefficient considering that it needs
tremendous data collection and training time. Therefore, this
paper applies the transfer learning technique [42] to transfer
diagnosis knowledge between a well‐trained drone model and a
new drone model to generalise the network‐based drone fault
diagnosis.

Figure 10 illustrates the drone‐based transfer learning
framework. Firstly, the CNN employs sufficient spectrogram
images based on the first drone as training data to obtain a
well‐trained diagnosis model. The audio‐based spectrograms
collected from the first drone and the layer weights of the
diagnosis model used to extract valuable audio characteristics
are defined as source domain DS. The identification based on
three different propeller damage levels is defined as diagnosis
task TS for the first drone. Next, transfer learning reserves
most of the network layers to retain the knowledge of DS and
TS and replaces the last few layers with some new layers to
extract specific audio features of spectrograms generated from
the second drone. Finally, a second drone‐based diagnosis task
TT in a diagnosis target domain DT can be improved based on
the knowledge from the first drone's DS and TS by transfer
learning, where DS ≠ DT, TS ≠ TT. Note that the training
process of transfer learning only takes a few spectrogram im-
ages from the second quadrotors as training data, and fine‐
tunes the layer weights.

5.2 | Experiment tests of generalised
diagnostic model

As mentioned earlier, the accuracy of the CNN‐based fault
diagnosis model for the first quadrotor can achieve 96.78%. If
this diagnosis model directly employs all the spectrogram im-
ages generated from the second quadrotor as the test dataset,
the classification accuracy is 32.61%, which closely approxi-
mates the proportion of the propeller types. To generalise the
fault diagnosis model, transfer learning takes the spectrogram
images collected from the second quadrotor.

To see if the diagnosis model can be generalised using only
a small dataset based on transfer learning, we take only five
images based on each propeller damage condition to construct
the training dataset (15 images). To validate the performance of

the generalised diagnosis model, the test dataset is composed
of 339 images totally. In addition, the remaining 60 images
constitute the validation dataset. Figure 11a,b is the transfer
learning training processes without transfer learning and with
transfer learning respectively, and the classification accuracies
of the test data are 66.67% and 89.68%, respectively.

Figure 12 indicates the transfer learning confusion matrix
of the test dataset. The true and predicted classes both contain
three labels: ‘unbroken’, ‘slightly broken’, and ‘seriously
broken’. The confusion matrix provides the classification de-
tails. The true positive rate (TPR) and false negative rate (FNR)
in the row indicate the classification result for each true class.
To elaborate, consider the category ‘slightly broken’ as an
example. There are a total of 113 observations that possess this
true label (comprising 6 misclassified, 100 correctly classified,
and 7 misclassified). Consequently, the TPR for this category is
calculated to be 88.5%. On the other hand, the precision and
false discovery rate (FDR) in the column indicate the classifi-
cation result for each predicted class. For example, a total of
120 observations are classified as ‘slightly broken’ (including 6
misclassified, 100 correctly classified, and 14 misclassified).
Hence, the precision for this predicted class stands at 83.3%.

To improve the fault detection performance, the number
of spectrogram images from each propeller damage condition
has been augmented from 5 to 10. The validation dataset
maintains the same number of images. The test dataset has 324
spectrogram images. The user‐defined configuration of the
network hyperparameters is as follows: the mini‐batch size is 4,
the maximum number of epoches is 20, the initial learning rate

TABLE 3 Diagnostics accuracy comparison among cases with various distances between the audio receiver and the quadrotor, as well as the different
levels of signal‐to‐noise ratio (SNR).

Distance from
quadrotor (m) Without noise (%)

SNR = 50 dB SNR = 30 dB SNR = 10 dB
Retraining
(no retraining) (%)

Retraining
(no retraining) (%)

Retraining
(no retraining) (%)

2 95.24 92.06 (93.10) 96.83 (74.76) 93.65 (49.52)

4 100.0 100.0 (100.0) 93.65 (81.67) 96.83 (54.05)

6 100.0 100.0 (95.48) 96.83 (80.48) 93.65 (56.43)

8 96.83 95.24 (88.81) 98.41 (75.95) 92.06 (36.67)

Overall 98.02 96.83 (94.35) 96.42 (78.21) 94.05 (49.17)

F I GURE 1 0 The two drone‐based transfer learning frameworks.
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is 0.01, the momentum is 0.9, and the L2 regularisation is
1.0 � 10−4. Figure 11c,d demonstrate the training process
without transfer learning and with transfer learning, respec-
tively, and the classification results of the test data are 82.72%
and 93.21%, respectively.

The detection results in Figure 11 indicate a few points.
First, the detection capability of the diagnosis model would
be retarded by the insufficient training data. The other point
is that transfer learning allows the knowledge of the first
drone‐based diagnosis model to be utilised by the new
diagnosis model such that the detection can be accurate, for
example, 89.68% and 93.21%, even when using the same size

of the training data. In addition, the experimental test of the
transfer learning‐based diagnosis model is illustrated in
Figure 13. After 2.59 s of collection and computational time,
the diagnosis model modified by transfer learning identifies
the second unsafe drone and sends a warning signal such that
human workers can perceive the second threatening drone
before it crashes.

F I GURE 1 1 The comparison of the training processes with and without transfer learning. (a) The training process using 15 training images without transfer
learning. (b) The training process using 15 training images with transfer learning. (c) The training process using 30 training images without transfer learning.
(d) The training process using 30 training images with transfer learning.

F I GURE 1 2 The network classification result: TPR indicates the true
positive rate, FNR stands for the false negative rate, and FDR represents
the false discovery rate.

F I GURE 1 3 The experimental test of transfer learning‐based
diagnosis model.
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6 | HYPERPARAMETERS TUNING
USING BAYESIAN OPTIMISATION

The parameters of network layers are updated properly during
the training cross‐validation process so that the generalised
fault diagnosis model has reasonable detection performance.
However, the network hyperparameters such as the mini‐batch
size and the learning rate, as another crucial factor of the
network training, are pre‐defined and not trainable. Different
hyperparameter selections have an impact on parameter
updating during the training phase, causing the broken pro-
peller detection to be questionable. Meanwhile, the evaluation
of each hyperparameter selection takes the whole training
process, which results in multiple training computations.
Therefore, to obtain a robust diagnosis model and avoid
expensive evaluations, this paper uses Bayesian optimisation to
select the hyperparameters for transfer learning.

6.1 | Objective function setup

Bayesian optimisation is a useful optimisation approach for
finding the global optimum for the objective function, which is
expensive to be evaluated and without explicit form. In this
paper, the Bayesian optimisation treats the validation error ac-
cording to each hyperparameter selection as the objective
function f(x), where x, is a vector of selected hyperparameters,
including the size of minibatch, the maximum epoch, the initial
learning rate, the momentum and the L2 regularisation. The
objective function is an essential component of the hyper-
parameter selection, and the framework of the objective func-
tion setup is illustrated in Figure 14. The customised layers are
used to learn some specific features of the spectrogram images
from the second quadrotor. Only training data (15 images) and
validation data (60 images) have been involved in the objective
function build‐up. The validation error after each training
constructs the objective function of the Bayesian optimisation.

The β Ŷ ¼¼Y
n o

means the number of validation samples, for

which the ground truth label is equal to the classified label. β{Y}
means the total number of validation samples.

6.2 | Optimal diagnosis model
hyperparameter selection

All evaluations of the validation error contribute to a Gaussian
process model. The Gaussian process prior is denoted as
follows:

f ðxÞeN μðxÞ;
X
ðx; xÞ

� �
ð7Þ

where N here means normal distribution, μ and ∑ indicate a
mean function and a covariance function, which correspond to
every hyperparameter selection. A series of hyperparameter
selections x1;…xn½ � is denoted as X. Based on these observed
hyperparameter selections and the validation errors f(X ), the
objective function value of next hyperparameter selection x* is
obtained with the following posterior process (see details in
Refs. [43, 44]):

f x∗ð Þjf ðXÞeN μ∗ x∗ð Þ; σ2
∗ x∗ð Þ

� �
ð8Þ

μ∗ x∗ð Þ ¼
X

X; x∗ð Þ
T
X
ðX;XÞ−1ðf ðXÞ − μðXÞÞ þ μ x∗ð Þ

ð9Þ

F I GURE 1 4 The objective function of Bayesian optimisation setup
framework.

Algorithm 1 Bayesian optimisation with neural network.
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σ2
∗ x∗ð Þ ¼

X
x∗; x∗ð Þ −

X
X; x∗ð Þ

T
X
ðX;XÞ−1

X
X; x∗ð Þ

ð10Þ

where μ(x*) is the prior mean of next hyperparameter selection
x*, and the μ∗ x∗ð Þ and σ2

∗ x∗ð Þ are the posterior mean and
posterior variance, respectively. This paper employs the ex-
pected improvement acquisition function, which maximises the
difference between the observed minimum validation error f0
and the posterior validation error to select the next hyper-
parameter configuration to be evaluated. The acquisition
function is denoted as follows (see details in Refs. [43, 45]):

EI x∗ð Þ ¼ E max 0; f 0 − f x∗ð Þð ÞjX; f ðXÞ½ �

¼

Z f 0

−∞
f 0 − f x∗ð Þð ÞN f x∗ð Þ; μ∗; σ2

∗
� �

df x∗ð Þ

¼ σ∗ x∗ð Þφ
Δ∗ x∗ð Þ

σ∗ x∗ð Þ

� �

þ Δ∗ x∗ð ÞΦ
Δ∗ x∗ð Þ

σ∗ x∗ð Þ

� �

ð11Þ

where EI(x*) indicates the expected improvement, which is a
positive value conditioned on observed validation errors and
Δ∗ x∗ð Þ is f0 − μ*(x*). The φ and Φ are the probability density
functions of normal distribution and cumulative distribution.

To obtain the optimal hyperparameter selection xnþ1, a
series of sample points xc are generated as candidates ac-
cording to normal distribution. By using the Nelder–Mead
algorithm, the sample point with the maximum value of ex-
pected improvement is determined by local searching [46]. The
equation is denoted as follows:

xnþ1 ¼ argmax EI xcð Þð Þ ð12Þ

6.3 | Validation with experimental tests

The framework of modified transfer learning including
Bayesian optimisation is demonstrated in Figure 15. A well‐
trained network developed from drone A and the spectro-
gram images dataset from drone B are the basic components
of transfer learning. In order to discover the optimal

hyperparameter selection xopt, a certain value range of each
optimisable hyperparameter is pre‐defined (e.g., the mini‐batch
size ranges from 2 to 8, the maximum epoch ranges from 10 to
20, the initial learning rate ranges from 1.0 � 10−5 to
1.0 � 10−2, the momentum is from 0.8 to 0.98, and the L2
regularisation is from 1.0 � 10−8 to 1.0 � 10−2) and the total
number of training processes is 30. The transfer learning
provides the validation error for each complete training pro-
cess as the objective function in Bayesian optimisation. A new
fault diagnosis model is chosen with corresponding hyper-
parameters based on the Bayesian optimisation result. The
algorithm of neural network training with Bayesian optimisa-
tion is presented in Algorithm 1.

After 30 complete training processes, the optimal config-
uration of network hypermeters is that the mini‐batch size is
8, the maximum epoch is 11, the initial learning rate is 0.0094,
the momentum is 0.8390, and the L2 regularisation is
4.228 � 10−5. The detection accuracy result of the corre-
sponding diagnosis model with 339 test spectrogram images is
shown in Figure 16. In the second row of the classification
result, only one test image generated from the drone with a
slightly broken propeller is classified as ‘a severely broken
propeller’ image inaccurately. Compared with the detection
accuracy (89.68%) without Bayesian optimization, the detec-
tion accuracy achieved is around 99.70%.

7 | CONCLUSIONS AND FUTURE
WORK

This paper has presented a new and comprehensive drone fault
diagnosis method that can provide early warning signs for risky
flights. One advantage of this method is that it only requires
audio data collected from the drone flight in real‐time. The
features of audio data are first represented by a spectrogram
and then sent to a CNN‐based diagnosis model that can
identify the propeller damage level and the model uncertainty
level. This diagnosis model is further improved by leveraging
transfer learning techniques such that it only requires a small
amount of training data. Moreover, the hyperparameters of the
diagnosis model are optimised to speed the convergence rate,
enhance the robustness of the fault diagnosis model, and

F I GURE 1 5 The architecture of transfer learning using Bayesian
optimisation.

F I GURE 1 6 The network classification result based on Bayesian
optimisation: TPR indicates the true positive rate, FNR stands for the false
negative rate, and FDR represents the false discovery rate.
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reduce some unnecessary computational workloads. All the
data sets used in this study are collected from real flight tests,
and the diagnosis model and the early warning system have
been validated on real flight tests. Accuracy of around 99.70%
can be achieved as discussed in this paper.

Although the diagnostic accuracy using the proposed
approach is promising, it is essential to acknowledge two
limitations of this approach. Firstly, there is a need to improve
the utilisation of the quantified uncertainty associated with the
diagnostic model. This is beneficial for eliminating unnecessary
early warnings or alarms and enhancing the reliability of the
warning system. The second limitation is the lack of efficient
ways to make the proposed approach to be more robust and
generalised, particularly when facing diverse real‐world envi-
ronments. Future studies will be dedicated to exploring adap-
tive methodologies of determining uncertainty for early
warning generation. Furthermore, we intend to integrate un-
supervised learning techniques into our approach such that the
practical applicability can be enhanced. For example, we could
employ Generative Adversarial Networks (GANs), a type of
widely used unsupervised learning models, for the develop-
ment of a propeller diagnostic model. The Generator of a
GAN exhibits the capacity to create synthetic spectrogram
images, thereby substantially alleviating the burdens associated
with data collection and labelling. Meanwhile, the Discrimi-
nator of a GAN excels at learning critical features for dis-
tinguishing between real and synthetic spectrogram images.
The learned feature extraction skills can be utilised to further
improve the quality of the propeller diagnosis.
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